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Abstraet--A general integral procedure has been developed for the analysis of laminar film 
condensation heat transfer. A solution of the gravity force condensation problem with constant 
properties is presented, including the effect of the drag due to an initially stationary body of pure 
saturated vapor. The present integral method, based on the two-phase boundary layer theory, 
assumes a finite density-viscosity ratio between the liquid and vapor phases, and can, in fact, be 
employed under almost all possible two dimensional and axisymmetric geometrical configurations. 
An extensive comparison of the calculation results with available exact solutions reveals an excellent 
performance of the present integral procedure. 

I N T R O D U C T I O N  

Koh et al. (1961) attacked the body force film condensation problem by simultaneously 
solving the complete liquid and vapor boundary layer equations through the similarity 
transformation. Subsequently, Koh (1961 ) proposed an integral method and solved the same 
problem for the limiting condition, namely, an infinite density-viscosity ratio R = pv/(pp)~ 
(where p is the liquid density; ~t is its viscosity; thus, the quantities associated with the liquid 
phase will be presented without a subscript, while those associated with the vapor phase will 
be identified by the subscript G). 

The present paper proposes an integral procedure for obtaining the solution to the 
two-phase boundary layer equations in the laminar film condensation in the presence of a 
body force. The analysis differs from previous approximate analyses by retaining not only 
the inertia and convection terms, but also the density-viscosity ratio R as an additional 
parameter so as to investigate their effects on the heat transfer functions. Thus, it is valid 
even for the case of low Prandtl number fluids at a high pressure, in which R is not 
significantly greater than unity (note, R approaches unity at the critical pressure). 
Moreover, the method can be employed for almost all possible plane and axisymmetric 
bodies. A comparison of the flat plate calculation results with the exact solutions, in fact, 
reveals an excellent performance of the present integral solution procedure. 

PHYSICAL MODEL AND G O V E R N I N G  E Q U A T I O N S  

The physical model and boundary layer coordinates (x, y) are indicated in figure 1. The 
body may be plane or axisymmetric, and its wall geometry is given by the function r(x). The 
wall surface at a constant temperature Tw is exposed to a quiescent, pure vapor at the 
saturation temperature 7",. (>Tw). Thus, condensation occurs on the isothermal wall. 
Consequently, there simultaneously develop both liquid and vapor boundary layers. 

A usual control volume consideration within the liquid film thickness 6 and the vapor 
layer thickness A leads to the following momentum equations: 

Liquid: 

d + d f ~  + p~u dy 
d-x fo p~u2 dy - ui dx o [ +'l It] 
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Figure 1. Physical model and coordinate system. 

Vapor." 

where 

and 

d fx  +A * 2 * 03t/ ] dx 6 poru dy + u, d fo6P~udy- -r#~y , [2] 

1: plane flow, 

~" = r(x): axisymmetric flow, 
[3a] 

g . - ~ g c o s O - g  1 - ~ d x ] j  ' [3b] 

where g is the acceleration due to gravity, u is the steamwise velocity component, ~ is the 
surface orientation angle, while the subscripts w and i refer to the wall (y = O) and the 
liquid-vapor interface ( y - 6 ) ,  respectively. In addition to the no-slip condition for the 
velocity, the following compatibility conditions on the liquid-vapor interface have been 
already implemented in the vapor momentum equation [2]: 

d 

and 

Ou I Ou] [5] 
~-~Y , - ~ Y  ,.G' 

where v~ is the normal direction velocity component at the interface. 
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The integral equation for the energy conservation within the liquid phase may be given 

d fo '  p~'uCp( T - T~)dy - ~'k kOy[aT [ , _  ~YL)'OT [6] 

Here, T is the local temperature, Cp is the specific heat of the liquid, and k is its thermal 
conductivity. Furthermore, the following energy balance relation should hold along the 
interface: 

d ~ OT I hZ~ dxfo p*ru dy - ~'k-~y ~ [7] 

where hLa is the latent heat of condensation. Since the advection terms in the momentum and 
energy equations must vanish near the wall, the conservation equations in their original 
differential form indicate 

and 

where 

1 ~2 02u { g;, ~ 
A m  2u~Oy 2 w-2vu l  [8a] 

02T[I _ 0, [8b] 
OY 2 I,, 

gf  - (p - po )gx /p .  [8c] 

Upon considering the auxiliary equations above, the velocity and temperature profiles within 
the liquid layer may be prescribed as 

f ( n ; A , C )  - u /u i -  C71 - An 2 + (1 - C + A)Tfl [9a] 

and 

where 

0(r/;At) • ( T -  Ti)/(Tw - Tj) - 1 - (1 + A,)n + A,n 3, [9b] 

In addition to [8a, b], the velocity profile satisfies f - O, 0./'/077 - C at n ffi 0 and f = 1 at 
7/-  1, while the temperature profile meets the conditions, 0 - 1, 00/&! ~ - (1 + A,) at ~ = 0 
and 0 ~ 0 at ¢/ - 1. Obviously, the shape factor At accounts for the nonlinearity of the 
temperature profile. The velocity profile in the vapor layer, on the other hand, may be 
specified simply as 

f~(nD " u/u,- I - 2n6 + n~, [ 10a] 

where 

nc - (y - /~) /A.  [10hl 

,1 - y /~ .  19cl 
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Substituting [9a, b] and [10a] into [1], [2], [6], [7] and [5], one obtains 

- + , , (3  + A - 3 C )  - 

~(PG/P) d , 2 d . vE*rui -~xru,A + u t - ~ x A r u , 6 -  -~ , 

d 3vA,~ 
D;'ud5= Pr / i '  

d A*rud5 = v(1 - 2A,)H~ 
Pr~ 

and 

[ l la]  

[ l ib]  

[]lc] 

[l ld] 

= uEAI2uo,  [1 le] 

where Pr is the liquid Prandtl number. Moreover, the sensible-latent heat ratio H and the 
shape factors are defined as 

and 

H - Cp(TI - Tw)/hLo, [12a] 

A - L ' f d •  = (3 + 3 C -  A)/12, [12b] 

B = f 0 ~ f  2 d,/= (30 + 24C + 16C 2 - 10A - 11 CA + 2A2)/210, [12c] 

D = fo t fOd~l  = (21 + 4 9 C -  24At - 32CAt - 14A + llAAt)/420 [12d] 

[ 12e] E == _0f0~ ,-I = 2 C - A -  3. 

GENERAL SOLUTIONS 

The differential equations [ l la ,  b,c, d] coupled to the auxiliary equations [Sa] and 
[l le] should simultaneously be solved for the six unknowns, namely, 6, A, u~, A, C and At. 
Among these unknowns, the interracial velocity ul and the vapor layer thickness A may be 
eliminated in favor of A and t~ using [8a] and [ 11 e]. For the case of general nonsimilar flows, 
the shape factors such as A and C may vary downstream. However, the rates of the 
streamwise variations of these shape factors may usually lag small enough for the "quasilocal 
similarity" to hold as already substantiated for the film condensation on the horizontal 
circular cylinder without interracial shear (Nakayama & Koyama 1984). Thus, neglecting 
the first derivatives of these shape factors, one can solve equations [1 la, b, c] to obtain three 
distinct expressions for ~4 as 

( ~ G r x  = 24A(1 + A -  C) I 8 A R E  2 8AAt 
5 B - 3 A 3 R A E  + 2 Io = PrD It, [13] 
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where 

I -  
fox (34a-4S g~B-A)t/Om-3,4J dx 

(~.4a-4A g~a-A) l/tSa- 3A) X [14a] 

fo  ~ (34asE+s/5 g~+6/5)l/Os.4E+2) dx 

(34~+./~ g~+6/5)s/o~m+2) x [14b] 

fo  ~ (34 g~)l/3 dx 

1 ,  - (;'  g~)'/~ x [14cl 

and 

Grx • g" X3/V 2. [14d] 

The first and second expressions in the right-hand side of [13] may be combined to give 

I~ 9 A ( 1 - C + A ) (  2 ) 
7 -  1 [151 

Upon substituting [ 12d] into the last expression in [ 14a}, the second and the last right-hand 
expressions are equated and solved for A, as 

21 + 4 9 C -  14A 
A, = 24 + 3 2 C -  l lA + 1260A(1 + 2/3 R A E ) ( I d I c E  Pr)" [16] 

Furthermore, [ 11 c, d] under the assumption of the quasilocal similarity readily lead to the 
expression for the sensible-latent heat ratio H as 

H = 3 A A,/D(I - 2A,). [17] 

Thus, the solution of the problem has eventually been reduced to the determination of the 
three unknown shape factors, namely, A, C and A, from [15], [16] and [17] for given Pr, H, 
R and 3. Upon locally evaluating the functions l (x) ,  lo(x) and l,(x) according to the 
prescribed geometry r(x), one must simultaneously solve the above three equations for A (x), 
C(x) and At(x). The solution, in general, requires an iterative procedure at each integration 
step. Such a step-wise iterative procedure has already been described in detail for the case 
without interfacial shear (Nakayama & Koyama 1984). The initial values of the shape 
factors at x = 0, however, must be determined before marching downstream in consideration 
of the similar film layers as described in the following soction. Once the shape factors are 
determined, the interfacial velocity u~ and Nusseit number Nux  - '  h x / k = (x / ( Ti - Tw) ) 
(07"/0),) Iw (where h is the local heat transfer coefficient) are given by 

(u ,x /~) /C ,x  '/~ - ( GI ,  n /Pr ) ' / ' / 2A ,  [18a] 

Nux /Grx  l/' = (1 + A,) (Pr /HCdt)  '/', [18b] 

where 

G == 8A(1 - 2A,)/3A. [18c] 
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Thus, 

(6 /x )4Grx  - Cal tH/Pr .  [lSd] 

SOLUTIONS TO SIMILAR FILM LAYERS 

The consideration of the stagnation flows around x - 0 (Koyama & Nakayama 1982) 
leads to the following facts: 

{~i plane flows, 
~-~x ~, i -  [ 1 % ]  

axisymmetric flows, 

{~: pointed body, [19b] 

gx ~ xJ, J - blunt body. 

The functions I, Io and It under the relations above reduce to 

4 (B - A) i + (3B - A ) j I - '  ' [20a] 
1 -  1 + 5 B  - 3 A  / 

4 ( R A E  + 2/5) i + ( R A E  + 6/5) j~ -! 
Ic ffi 1 + 3 R A E  + 2 ] [20b] 

and 

I, - [1 + ( 4 i  + j ) / 3 ] - ' .  [20c] 

For example, the integers ( i , j )  may be given as (0, 0) for a vertical flat plate, (1, 0) for a 
cone, (0, 1) for the stagnation flow over a horizontal circular cylinder and (1, 1) for the 
stagnation flow over a sphere. It is interesting to note that, as the density-viscosity ratio R 
becomes sufficiently large, the function Io asymptotically approaches to !,, and the terms 
associated with R in [15] and [16] vanish at the same time. Consequently, the solutions 
become fairly insensitive to R as increasing R. Hence, the fact which was pointed out by Koh 
et al. (1961 ) for a vertical flat plate pertains to all similar condensate layers. 

For the similar film layers, the substitution of [20] reduces [ 15], [ 16] and [ 17] to a set of 
simple algebraic equations. Once Pr, H and R are specified, these three algebraic equations 
can be solved for A, C and A,. In actual calculations, it is more expedient to use an inverse 
method. First, for a prescribed shape factor C is determined from [15]. Then, A, is readily 
calculable from [ 16]. Finally, [ 17] gives the corresponding sensible-latent heat ratio H. In 
this way, one can construct the solution curves for the similar film layers. 

RESULTS AND DISCUSSION 

Figure 2 is plotted to show the effects of H on the shape factors. According to the 
definitions, the shape factors A, Cand .4 are associated with the velocity curvature, gradient 
and the condensation rate, respectively, while the abscissa variable H is related with the film 
thickness as may be observed in [ 18d]. An increase in Pr only brings the shape factors closer 
to their limiting values corresponding to the Nusselt's solution (Nusselt 1916) namely, A - 
1, C = 2 and A - 2/3. Hence, the effects of the inertia and interfacial shear on the velocity 
profiles are expected to become negligible for high Prandtl numbers. 

In figure 3, the comparison is made among the present solution, the exact solution by 
Koh et el. (1961) and the approximate solutions by Koh (1961) in terms of the local heat 
transfer rates. The present solution appears to b¢ in excellent agreement with the exact 
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Figure 2. Velocity shape factors. 

solution, while Koh's approximate solution based on the assumption of an infinite B shows an 
appreciable deviation from it. 

The predicted velocity profiles are plotted along with the exact solutions in figures 4(a) 
and 4(b) for high and low Prandtl numbers, respectively. The abscissa variables in the 
figures are chosen as the similarity variables used by Koh et al. (196 l), namely, 

y_ 
"L'xk 4 ] 

and 

x Va! 

The figures demonstrate that even the details of the velocity profiles agree closely with the 
exact solutions. 

Figure 5 presents the temperature profiles obtained for H - 0.702 and 0 . 0 8 1 9 ,  with Pr - 

10  a n d  R - 100. Again, the predicted profiles turn out to be in good accord with the exact 
solutions. A careful observation reveals the nonlinearity of the temperature profile due to 
convection (A, - 0.0717 for H -  0.702 and A, - 0.00997 for H -  0.0819). 
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Figure 3. Comparison of approximate and exact solutions. 



142 A. NAKAYAMA and S. KOYAMA 

0.3  

0.2 

(a)  ~ '  

-2 
~ 0 . I  

0 
0 

-- Pr==R 1 

/ 
H = 0.748 

(a) 

I I I 
0.2 0.4 0.6 

~L 

Vapor 

I ~ - '  J I 
0.8 1.0 

0 0.2 0.6 

n V 

(b) 

0 .5  

0.4 

x 0.3 

D~ 

-~.0.2 

0.1 

Pr = 0.03 R = 3.6x 105 

Vapor 

( b ) H-0.149 I 
I 

I I I I I k I I 
0 0.4 0.8 1.2 1.6 2.0 

~]L 0 0.I 

D v 

Figure 4. Velocity profiles. 
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Figure 6. Similar film layers on cone, cylinder and sphere. 

Calculations have been also carried out for the other similar flows, namely, the flow on a 
vertical cone as well as the stagnation flows on a horizontal circular cylinder and a sphere. 
The results are plotted altogether in figure 6 where the ordinate variable is chosen to have a 
common asymptote (unity) for the no-inertia limit. Therefore, for the direct comparison, the 
value read from the figure should be multiplied by the factor of 17 ~/4 (namely, 1.236 for a 
cone, 1.075 for a cylinder and 1.278 for a sphere). The dashed lines in the figure correspond 
to the results obtained without considering the interracial shear (Nakayama, Koyama & 
Ohsawa 1982). The interracial shear has a significant effect on the heat transfer rate. The 
reduction in the heat transfer level seems considerable especially for the cone. 

As for the application of the present integral procedure to the nonsimilar flows, the 
aforementioned step-wise iterative calculations have been performed for the condensation on 
a horizontal circular cylinder. The heat transfer rates averaged over the circumference of 
cylinder are shown in figure 7 along with the results obtained by Chen (1961) using a 
perturbation method, h in the ordinate variable is the overall heat transfer coefficient, and d 
is the diameter of cylinder. 
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Figure 7. H e a t  transfer from a horizontal circular cylinder. 
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CONCLUDING REMARKS 

Since the present analysis, unlike previous approximate analyses, takes full account of 
the inertia and convection effects, it is particularly suited for a speedy, and yet, accurate heat 
transfer estimate on the film condensation of low Prandtl number fluids such as liquid 
metals. An effort has been made to retain the density-viscosity ratio R as an additional 
parameter so that the film condensation at a high pressure may well be treated without loss 
of accuracy. 

It is also interesting to note that, in the case of the saturated film boiling, the governing 
equations are identical to those presented here for the film condensation, except that the 
roles of liquid and vapor phases are interchanged. Thus, the present solution procedure is 
readily applicable for the saturated film boiling problems simply by substituting a small 
value into R which, then, should be defined as (p~t)o/p~. 
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